Proceedings of the 9th International Symposium on Ferroconcrete and Thin Reinforced Cement Composites

Green Technology for Housing and Infrastructure Construction

May 18-20 2009, Bali-Indonesia

Edited By

Anshori Djausal
University of Lampung

Fikri Alami
University of Lampung

Antoine E. Naaman
University of Michigan
PROCEEDINGS

9TH INTERNATIONAL SYMPOSIUM ON FERROCEMENT AND THIN REINFORCED CEMENT COMPOSITES: GREEN TECHNOLOGY FOR HOUSING AND INFRASTRUCTURE CONSTRUCTION

Bali, May 18 – 20, 2009

Edited by:

ANSHORI DJAUSAL
FIKRI ALAMI
ANTOINE E. NAMAN

THE UNIVERSITY OF LAMPUNG
BANDAR LAMPUNG, INDONESIA
FERROCEMENT AND THIN REINFORCED CEMENT COMPOSITES: GREEN TECHNOLOGY FOR HOUSING AND INFRASTRUCTURE CONSTRUCTION

Edited by:

ANSHORI DJAUSAL
FIKRI ALAMI
ANTOINE E. NAMAN

THE UNIVERSITY OF LAMPUNG
BANDAR LAMPUNG, INDONESIA
May 2009
Preface

Symposium Organization

Acknowledgments

PART 1: APPLICATIONS IN HOUSING AND RELATED STRUCTURES

1. **Ferrocement Hydraulic Complex of Punta Hicacos Hotel**
 Hugo Wainshtok Rivas
 Faculty of Civil Engineering, Higher Politechnic Institute Jose A. Echevarria (ISPJAE), La Habana, Cuba
 3

2. **Experience with Prefabricated Ferrocement Panels for the Construction of Ferrocement Halls**
 Milenko Milinkovic
 Milinkovic Company Ltd., Belgrade, Serbia
 11

3. **Intact Structures Designs for Low Cost Durable Ferrocement Housing with Water Collection**
 Owen Waldschlagel and Stephen A Bohlen
 Intact Structure Inc., New York, USA
 21

 Lilia Robles-Austriaco, Paul N. Javier, and Elizabeth C. Tuliao Leopoldo Curia
 College of Engineering, Angeles University Foundation, Angeles City, Philippines
 33

5. **Application of Elevated Ferrocement Irrigation Channel**
 Fikri Alami and Surya Sebayang
 Civil Engineering Department, University of Lampung, Indonesia
 43
6 Solar House - Green Technology – Energy Efficiency
MILENKO MILINKOVIC
Milinković Company Ltd., Belgrade, Serbia

7 Prefabricated Ferrocement House in University of Lampung
MASDAR HELMI and FIKRI ALAMI
Department of Civil Engineering,
University of Lampung, Indonesia

PART 2: STRUCTURAL STRENGTHENING USING FERROCEMENT

8 Structural Strengthening Using Ferrocement Laminates
P. PARAMASIVAM and K.C.G. ONG
National University of Singapore, Singapore

9 Behaviour of RC Beams Strengthened with High Performance Ferrocement
B. PALANI and R. SUBRAMANIAN
Department of Civil and Structural Engineering, Annamalai University, Annamalainagar, India.

10 Strength and Behaviour of RCC Frame Retrofitted with Ferrocement
N. GANESAN, P.V. INDIRA, and SHYJU P. THADATHIL
Department of Civil Engineering, National Institute of Technology, Calicut, India

11 Strengthening of Bolt Shear Joints in Industrialized Ferrocement Construction
M.A. MANSUR, MOHAMMAD ISMAIL, and C.E. CHIONG
Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM, Johor, Malaysia

12 High Performance Ferrocement as Beam-Column Confinement for Seismic Loading
ANTOINE E. NAAMAN and ALEX SOTIROPOULOS
Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA
PART 3: ANALYSIS, MODELING AND SIMULATION

13 Service Life Simulation of Thin Reinforced Cement-Based Composites 155
JOHN BOLANDER
Department of Civil and Environmental Engineering,
University of California, Davis, USA
MIGUEL PEREZ-LARA
Universidad Autonoma de Queretaro, Mexico

14 Dynamic Analysis of Ferrocement Ragunan Zoo Structure after 24 Years of Service 163
FIKRI ALAMI, ANSHORI DJAUSAL, and A. YAJID
Department of Civil Engineering,
University of Lampung, Indonesia

15 Structural Design of Ferrocement for Lampung Siger Monument in Indonesia 177
BAYZONI and ANSHORI DJAUSAL
Department of Civil Engineering,
University of Lampung, Indonesia

16 Prediction of Flexural Strength of RC Beams Rehabilitated with Ferrocement Laminates Using Artificial Neural Networks (ANN) 183
C. ANTONY JEYASEHAR, B. VIDIVELLI, and K. SUMANGGALA
Department of Civil and Structural Engineering,
Annmalai University, India

17 Shear Strength Prediction of Ferrocement Using Artificial Neural Network 199
M.A. MANSUR
Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), Johor, Malaysia
MOHAMMAD ISMAIL
Department of Structures and Materials,
UTM, Johor, Malaysia
Y. J. LAU
Department of Civil Engineering,
National University of Singapore, Singapore
18 Hybrid Intelligent System for Optimal Design of HPC Mix Proportion
RATTAPOOHM PARICHATPRECHA
Department of Civil Engineering, Naresuan University, Phitsanuloke, Thailand
VATWONG GREEPALA
Department of Civil and Environmental Engineering, Kasetsart University, Sakonnakorn, Thailand
SUN SAYAMIPUK and PICHAI NIMITYONGSKUL
School of Engineering and Technology, Asian Institute of Technology, Pathumthani, Thailand

19 Finite Element Based Analysis and Design of Sandwich Panel Structures
NAVEED ANWAR and T. KEERATI
Asian Center for Engineering Computations and Software (ACECOMS), Asian Institute of Technology, Bangkok, Thailand
P. WARNITCHAI
School of Civil Engineering, Asian Institute of Technology, Bangkok, Thailand

20 Analysis of Ferrocement Flat Plate under Hydrostatic Loading
HASTI RIAKARA HUSNI
Department of Civil Engineering, University of Lampung, Indonesia

21 Study on the Shape of Ferrocement Weirs as an Alternate Replacement for a Damaged Rubber Dam
ANSHORI DJAUSAL, BAYZONI, and NUR ARIFAINI
Department of Civil Engineering, University of Lampung, Indonesia

22 Flexural Capacity of Strain-Hardening Fiber Reinforced Concrete
CHOTE SORANAKOM and BARZIN MOBASHER
Department of Civil and Environmental Engineering, Arizona State University, USA
PART 4: TEXTILE, FRP AND NATURAL REINFORCEMENTS

23 Shear Repair of PC Box Bridge Girders Using CFRP Fabric
JIM W. SIMPSON II
Kentucky Transportation Cabinet, Division of Operations, Frankfort, Kentucky, USA
ISSAM E. HARIK
Department of Civil Engineering, University of Kentucky, Lexington, Kentucky, USA

24 Rehabilitation of Wet-Joint Precast Concrete Beam Using CFRP
VERA A. NOORHIDANA
Department of Civil Engineering, University of Lampung, Indonesia

25 Obtaining Characteristic Material Strength of Textile Reinforced Concrete (TRC) from Laboratory Tests
FRANK JESSE, KAI SCHICKTANZ, and MANFRED CURBACH
Institute of Concrete Structures, Technische Universität Dresden, Germany

26 Commingling Yarns for Textile Reinforced Concrete
PLAMEN KRAVAEV, THOMAS GRIES, BONG-GU KANG, WOLFGANG BRAMESHUBER, MAIKE ZELL
and JOSEF HEGGER
Institut für Textiltechnik Aachen (ITA), RWTH University, Aachen, Germany
Institut für Bauforschung (IBAC), RWTH University, Aachen, Germany
Institut für Massivbau (IMB), RWTH University, Aachen, Germany

27 Textile Reinforced Concrete (TRC) Under Fire Loading
DANIEL EHLIG, FRANK JESSE, and MANFRED CURBACH
Department of Civil Engineering, Technische Universität Dresden, Germany
28 Characterization of Mechanical and Physical Properties of Arumã Fiber for Reinforcement in Cementitious Laminates

MARIA GORRET DOS SANTOS MARQUES, RAIMUNDO PEREIRA VASCONCELOS

Civil Engineer Post Graduation Course, Universidade Federal do Amazonas, Brazil
JOÃO DE ALMEIDA MELO FILHO

Civil Engineer Post Graduation Course, Universidade Federal do Rio de Janeiro, Brazil

PART 5: DURABILITY AND STRUCTURAL PERFORMANCE

29 Durability of Ferrocement

PAUL NEDWELL

Aerospace and Civil Engineering, University of Manchester, Manchester, UK
MOHAMMAD RAMESHT, MALEK RANIBAR TACKLYMIE, ALI NAKASSA, and SALAH GWELI
Manchester Centre for Civil and Construction Engineering, UMIST, Manchester, UK

30 Durability of Hybrid Ferrocement Hollow Roof Slab Panels Reinforced with Alkali Resistant Polyester Fibers under Cyclic Loading

D. SHOBA RAJKUMAR

Department of Civil Engineering, Government College of Engineering, Salem, Tamil Nadu, India
R. SUNDARARAJAN

Alagappa Chettiar College of Engineering and Technology, Karaikudi, Tamil Nadu, India

31 Shear Behavior of Porous Ferrocement Panels

MD. ZAKARIA HOSSAIN

Graduate School of Bioresources, Mie University, Tsu, Japan
32 Performance of Park Structures
Made with Ferrocement 399
A.M. KHAN
Department of Petroleum Engineering,
NED University of Engineering & Technology,
Karachi, Pakistan
S.F.A. RAFEEQI
NED University of Engineering & Technology,
Karachi, Pakistan
H.S. LODI
Department of Civil Engineering,
NED University of Engineering & Technology,
Karachi, Pakistan

33 Strength and Behaviour of Reinforced
Self Compacting Concrete Wall Panels 409
N. GANESAN, P. V. INDIRA, and
S. RAJENDRA PRASAD
National Institute of Technology Calicut, Kerala, India

34 Bamboo Shaving Reinforced Concrete Wall Panel 419
MARIA CHRISTINA C. VELASQUEZ
Department of Agricultural Engineering Pampanga
Agricultural College Pampanga, Philippines
LILIA ROBLES-AUSTRIACO
College of Engineering, Angeles University Foundation,
Angeles City, Philippines

PART 6: NON-TRADITIONAL MATERIALS AND APPLICATIONS

35 Nano-Composite Coatings
for Ferrocement Structures 433
P.N. BALAGURU
Rutgers The State University of New Jersey, USA

36 Development of Ferrocement Technology for
Earth Slope Protection 443
MD. ZAKARIA HOSSAIN and TOSHINORI SAKAI
Graduate School of Bioresources, Mie University, Tsu, Japan
<table>
<thead>
<tr>
<th>37</th>
<th>Precast Ferrocement Structural in Lieu of Rolled Steel Structural</th>
<th>455</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. A. DESAI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J A Desai Ferrocements Pvt. Ltd., Mumbai, India</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Two Stages of Construction of Menara SIGER Ferrocement Structures</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>ANSHORI DJAUSAL and BAYZONI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of Civil Engineering,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Lampung, Indonesia</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Prepacked Polymer Concrete as Alternative Method to Repair Reinforced Concrete Defects</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td>MOHD. ISNEINI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of Civil Engineering,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Lampung, Indonesia</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Performance of Mortar Containing Alkali-Activated Metakaolin Based Binders</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>STEVE W.M SUPIT, SUN SAYAMIPUK, and PICHAI NIMITYONGSKUL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asian Institute of Technology, Pathumthani, Thailand</td>
<td></td>
</tr>
</tbody>
</table>

Index of Authors

Index of Keywords

Authors’ Coordinates
Preface

Ferrocement and thin reinforced cement composites are essentially reinforced concrete products having less than about 50 mm in thickness. As such their reinforcement is subjected to dimensional scale constraints such as using a steel wire mesh versus a steel reinforcing bar, or mortar instead of concrete. Their applications are extensive in housing, agricultural structures, marine structures, and in repair-rehabilitation.

Over the course of the last five decades which mark the modern use of ferrocement and thin reinforced cement composites, their analysis, design, and manufacturing were the subject of remarkable advances; these include advances in: 1) the reinforcement, such as high strength steel, advanced fiber reinforced polymeric reinforcements, 2D and 3D textiles, etc, 2) the cementitious matrix, such as high strength or high performance, high durability, lightweight, blended with supplemental materials, additives, self-consolidation, ultra high strength, etc., 3) the concept of hybridization such as adding fibers and microfibers to supplement conventional reinforcement, and 4) the manufacturing process ranging from simple plastering to infiltration, extrusion, pultrusion, and the like.

The main objectives of this symposium are: to provide a compendium of up-to-date information on the latest development and research advances in the field of ferrocement and thin reinforced cement composites; to allow a forum of world specialists to share their knowledge, experience and vision; to foster collaboration and technical exchanges between researchers and practitioners nationally and internationally; to identify current technical gaps as well as immediate research needs; and to suggest directions to follow. This symposium attempted in particular to encourage contributions addressing green technology for housing and infrastructure applications.

Thin cementitious composites reinforced with steel wire mesh traditionally belong to the ferrocement family. The use of textiles or fabrics made of high performance fiber reinforced polymeric (FRP) meshes adds another dimension to the traditional ferrocement family. Thus ferrocement should, from now on, encompass the term thin textile reinforced concrete (TRC). The possible addition of discontinuous fibers or micro-fibers to the cement
matrix and new availability of three-dimensional textiles adapted for cement based applications offer unique opportunities for future developments and growth. It is one of the particular objectives of this symposium to illustrate the use of 2D and 3D textiles or fabrics, although they are still in their early development.

Another particular objective of this symposium is related to education. The development of sustainable, humane, safe housing and infrastructure for developing regions of the world is one of the grand challenges facing society, in which civil engineers should have a prominent role. Educating civil engineering students and professionals in the concept, science and technology of ferrocement and thin reinforced cement composites offers one important opportunity to meet this growing challenge.

Although, in the call for papers for this symposium, various themes were sought the final papers received were grouped according to several themes: 1) Applications in Housing and Related Structures; 2) Structural Strengthening Using Ferrocement; 3) Analysis, Modeling and Simulation; 4) Textiles, FRP, and Natural Reinforcements; 5) Durability and Structural Performance; and 6) Non-Traditional Materials and Applications.

We would like to take this opportunity to thank the authors who made this publication possible, members of the International, Scientific, and Local Organizing Committees, and the many organizations who have co-sponsored this symposium.

A. Djiausal, F. Alami and A.E. Naaman
Editors
Symposium Organization

Chair: Anshori Djusaal (University of Lampung, Indonesia)
A. E. Naaman (University of Michigan, USA)
P. Nimiyongsuk (Asian Institute of Technology, Thailand)
L. Austriaco (Angeles University, Philippines)
Iwan Nursyirwan (Ministry of Public Works, Indonesia)

Symposium Secretary
Fikri Alami (University of Lampung, Indonesia)
Alit Salain (Udayana University)

International Steering Committee
Chair: P. Balaguru USA
Co-Chair: P. Nedwell UK

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Brameshuber</td>
<td>Germany</td>
<td>R. C. Pama</td>
</tr>
<tr>
<td>S. Delvasto</td>
<td>Columbia</td>
<td>P. Paramasivam</td>
</tr>
<tr>
<td>A. Dubey</td>
<td>USA</td>
<td>H. W. Reinhardt</td>
</tr>
<tr>
<td>A. Fernandez</td>
<td>Mexico</td>
<td>S. Sayamipuk</td>
</tr>
<tr>
<td>T. Gries</td>
<td>Germany</td>
<td>S. P. Shah</td>
</tr>
<tr>
<td>J. B. Hanai</td>
<td>Brazil</td>
<td>K.H. Tan</td>
</tr>
<tr>
<td>S. K. Kaushik</td>
<td>India</td>
<td>E. Tatsa</td>
</tr>
<tr>
<td>K. Kiattikomol</td>
<td>Thailand</td>
<td>T. Uomoto</td>
</tr>
<tr>
<td>Y. Ohama</td>
<td>Japan</td>
<td>H. Wainstock-Rivas</td>
</tr>
</tbody>
</table>

Scientific Committee
Chair: J. Bolander USA
Co-Chair: P. Paramasivam India

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. A. Abdullah</td>
<td>Malaysia</td>
<td>A. Dubey</td>
</tr>
<tr>
<td>S. Ahmad</td>
<td>USA</td>
<td>M. El-Debs</td>
</tr>
<tr>
<td>R. Alexander</td>
<td>New Zealand</td>
<td>J. Melo Filho</td>
</tr>
<tr>
<td>O. Antezana</td>
<td>Bolivia</td>
<td>A. J. Guerra</td>
</tr>
<tr>
<td>N. Banthia</td>
<td>Canada</td>
<td>P. Guerrero</td>
</tr>
<tr>
<td>J.R. Choubury</td>
<td>Bangladesh</td>
<td>I. Harik</td>
</tr>
<tr>
<td>M. Curbach</td>
<td>Germany</td>
<td>Z. Hossain</td>
</tr>
</tbody>
</table>
Scientific Committee - continued
M. Ismail Malaysia A. L. Olivera Mexico
C. Jaturapitakkul Thailand G. Ong Singapore
P.J. Jennings UK J. Pera France
F. Jesse Germany T. Sakai Japan
S. Konsuwan Thailand A. K. Sharma Trinidad
H. Lodi Pakistan R.N. Swamy UK
M. Lopez USA P.F. Tamin Indonesia
A. Mansur Malaysia P. C. Tatnall USA
R. Mattone Italy D. N. Trikha India
B. A. Mironkov Russia I. Vickridge UK
B. Mobasher USA Sun Wei P.R. China
H. Nassif USA A.H. Zureick USA

Sponsorship
International Ferrocement Society, Bangkok, Thailand
International Ferrocement Information Center, Bangkok, Thailand
University of Lampung, Malaysia

Local Organizing Committee
Abang Emir Faridz (Public Works)
Masdar helmi (The University of Lampung)
T. Soesilo (PII)
Davy Sukamta (HAKI)
Oemar Handoyo (ITB)
Soesilo Sukardi (Public Works)
Made Sukrawa (UNUD)
Hery Riyanto (UBL)
Fifi Hasanah (PACTO)
Acknowledgments

This symposium was made possible by the combined efforts of a number of people and organizations who believe in the benefits of ferrocement as a green technology for numerous construction applications. We would like to acknowledge, with sincere thanks and gratitude, the support of the following organizations:

Lampung Province:
- Government of Lampung Province
- Kabupaten Wan Kanan
- City of Metro
- Kabupaten of Tulang Bawang
- Office of National Education
- Office of Public Works

University of Lampung:
- Faculty of Engineering
- Research Institute

University of Udayana, Bali

Central Government of Indonesia:
- Directorate General of Higher Education
- Directorate General of Water Resources, Public Works Department
- Directorate General of Marketing, Department of Culture and Tourism

Event Organizer: PACTO Convex, Ltd. (I.M. Suardana)

Cover Designer: Dedi Iswanto

We would also like to express our deepest gratitude to the following students and faculty from the University of Lampung, Civil Engineering Department, who have provided their time and utmost dedication to help in the production details of these proceedings, in record time: Hasti Riakara Husni, Bayzoni, Ika Kustani, Achmad Farouk, Mohd Isneini, Masdar Helmi, Febry Pernata, and Andius Dasa Putra.

A. Djausal, F. Alami and A.E. Naaman
Editors
Rector's Editorial

To have as ideal Unila becomes one out best ten universities in Indonesia, Unila is making every effort to carry out missions such as implementing collaborations with many parties. It is hope that these collaborations are for the benefits and sustainability of Unila.

The execution of routine meetings among construction's researchers and practitioners in the format of "9th International Symposium on Ferrocement and Thin Reinforced Cement Composites (Ferro-9th)" on 18 to 22 May 2009 in Bali is one of Unila's international collaboration effort that represented by the Faculty of Engineering. This symposium is collaboration between The Faculty of Engineering with the International Ferrocement Society (IFS) that gathers the ferrocement scientists from many leading universities all over the world.

It is hope that this symposium could disseminate up to date information on ferrocement construction and could benefit all parties improving partnership among universities.

This symposium is done well because of support from many parties. I thank all the parties that had helped and collaborated for the successful of the symposium.

May 2009
Prof. Dr. Ir. Sugeng P. Harianto, M.S